

Compensación en Adelanto

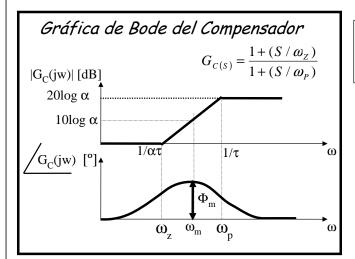
$$\frac{E_{O(S)}}{\alpha . E_{i(S)}} = \frac{R_2}{R_1 + R_2} \frac{1 + CR_1 S}{1 + \frac{R_1 R_2 C}{R_1 + R_2} S}$$

Definiendo:

$$\alpha = \frac{R_1 + R_2}{R_2}$$
 $\tau = \frac{CR_1R_2}{R_1 + R_2}$ $\alpha > 1$

Sustituyendo se tiene que:

$$\frac{E_{o(S)}}{\alpha.E_{i(S)}} = \frac{1}{\alpha} \times \frac{1 + \alpha.\tau.S}{1 + \tau.S} \qquad \qquad \qquad \qquad \frac{E_{o(S)}}{E_{i(S)}} = \frac{1 + \frac{S}{1/\alpha\tau}}{1 + \frac{S}{1/\tau}}$$


Donde:

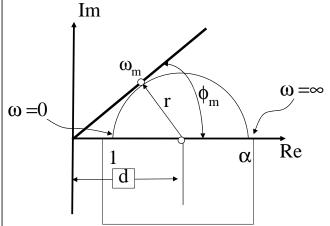
$$\omega_{Z} = \frac{1}{\alpha \tau}$$

$$\omega_{P} = \frac{1}{\tau}$$

$$\frac{E_{o(S)}}{E_{i(S)}} = \frac{1 + (S / \omega_{Z})}{1 + (S / \omega_{P})} = G_{C(S)}$$

Compensación en Adelanto

$$\frac{E_{O(S)}}{E_{i(S)}} = \frac{1 + (S / \omega_Z)}{1 + (S / \omega_P)} = G_{C(S)}$$

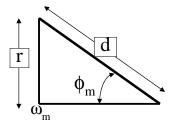

$$\omega_P = \frac{1}{\tau}$$
 $\omega_Z = \frac{1}{\alpha \tau}$

$$\log \omega_{\rm m} = (\log \omega_{\rm z} + \log \omega_{\rm p})/2 \quad \square \rangle \quad \omega_{\rm m} = (\omega_{\rm z} \omega_{\rm p})^{1/2} \Rightarrow \left| \omega_{\rm m} = \frac{1}{\tau \cdot (\alpha)^{1/2}} \right|$$

Ander J. Miranda

Relación entre ϕ_m y α :

TRAZA POLAR DEL COMPENSADOR:



En definitiva:

$$\alpha = (1 + \operatorname{sen} \phi_{\mathrm{m}})/(1 - \operatorname{sen} \phi_{\mathrm{m}}); \quad \phi_{\mathrm{m}} < 65^{\circ}$$

$$\omega_{\mathrm{m}} = \frac{1}{\tau \cdot (\alpha)^{1/2}} \quad ; \quad \alpha > 1$$

Compensación en Adelanto

$$r = \frac{1}{2}D = \frac{1}{2}(\alpha - 1)$$

$$d = 1 + r = \frac{1}{2} \left(1 + \alpha \right)$$

$$sen \phi_m = \frac{r}{d} = \frac{(1/2)(1-\alpha)}{(1/2)(1+\alpha)}$$

sen
$$\phi_m = (\alpha - 1)/(\alpha + 1)$$

Compensación en Adelanto

CARACTERÍSTICAS

- Mejora apreciablemente la respuesta transitoria.
- Disminuye la exactitud del estado estacionario (aumenta el
- ERP).
- En alta frecuencia puede acentuar los efectos de ruido.
- El ancho de banda del sistema en lazo cerrado se incrementa.

Las características de esta red de compensación es similar a las características del controlador PD

Ander J. Miranda

Ejemplo: 1

Compensación en Adelanto

Para el sistema dado, se requiere disminuir ts y Mp, además se desea que tenga un FM=50°, GM ≥10 dB y $K_V = 20 \text{ seg}^{-1}$ para el sistema, mediante una red compensadora $G_{(S)}H_{(S)} = \frac{4K}{S(S+2)}$ para el sistema, mediante una red compensadora

$$G_{(S)}H_{(S)} = \frac{4K}{S(S+2)}$$

1.- Calcular K con las condiciones de régimen permanente:

$$K_V = \lim_{S \to 0} SG_{(S)}H_{(S)} = S\frac{4K}{S(S+2)} = 2K \Rightarrow 2K = 20 \Rightarrow K = 10$$

2.- Calcule los valores de Bode en unas gráficas o en una tabla

$$G_{(S)}H_{(S)} = \frac{40}{S(S+2)} = \frac{20}{S(\frac{S}{2}+1)}$$

$$G_{(jw)}H_{(jw)} = \frac{20}{jw(\frac{jw}{2}+1)}$$

$$G_{(jw)}H_{(jw)} = \frac{20}{jw\left(\frac{jw}{2} + 1\right)}$$

$$|G(jw) H(jw)| [dB] = 20 \log 20 - 20 \log \omega - 20 \log \left[\left(\frac{w}{2}\right)^2 + 1 \right]^{1/2}$$

$$/G(jw) H(jw) [^{\circ}] = -90 - tg^{\frac{1}{2}} \frac{w}{2}$$

Ejemplo: 1

Compensación en Adelanto

$$|G(jw) H(jw)| [dB] = 20 \log 20 - 20 \log \omega - 20 \log [(\frac{w}{2})^2 + 1]^{1/2}$$

$$\frac{\sqrt{G(jw) H(jw) [^{\circ}]} = -90 - tg^{\frac{1}{2}} w}{2}$$

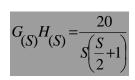
3.- Calcular GM y FM

$$\begin{split} GM &= 0 \; dB - \left| G(jw) \; H(jw) \right|_{w= \; wf} \\ GM &= + \infty \end{split} \label{eq:GM}$$

$$FM = 180 + \underline{/G(jw) \ H(jw)}_{w=wg}$$

$$FM = 180 + (-162) = 18^{\circ}$$

(No es la FM deseada)

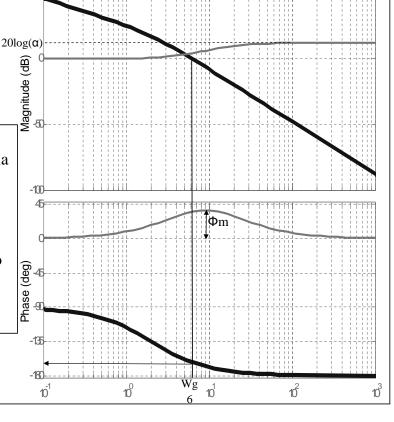

W [rad/seg]	G(jw)H(jw) [dB]	G(jw)H(jw)
1	25,05	-116,6
2,5	13,97	-141,4
5	3,44	-158,2
6	0,46	-161,6
7.5	- 3,26	-165,1
10	- 8,13	-168,7
100	- 48	-178,9

4.- Calcular ϕ_m

$$\varphi_m = Fm_{DES} - FM_{GH} + FS = 50\text{-}18\text{+}5 \text{ ... } FS = \text{Factor de Seguridad (5° a 12°);}$$

$$\varphi_m = 37^o$$

Ander J. Miranda


<u>Ejemplo: 1</u>

OBJETIVO

El objetivo es incrementar la fase del sistema en lazo abierto en la vecindad del cruce de ganancia (w_g), mientras se localiza el adelanto de fase máximo en la nueva frecuencia de cruce de ganancia (w_g')

Compensación en Adelanto BubDigam

Ejemplo: 1

Compensación en Adelanto

5.- Calcular α

$$\alpha = (1+sen \phi_m)/(1-sen \phi_m) = = (1+sen37)/(1-sen37) = 4,02$$

6.- Obtener la nueva frecuencia de cruce de ganancia

$$|G(jw)H(jw)|_{w=wg'} = -10 \log \alpha = -10 \log(4,02) = -6,4dB$$

$$w_g' = 9 \text{ rad/seg} \quad \text{con } w_g' = w_m$$

7.- Obtener w_z y w_p

$$w_p = \alpha^{1/2} . w_m = 18 \text{ rad/seg}$$

 $w_z = w_p/\alpha = 4,5 \text{ rad/seg}$

$$G_{c}(s) = 0.22 \frac{1 + \frac{s}{4.5}}{1 + \frac{s}{18}}$$

Compensador

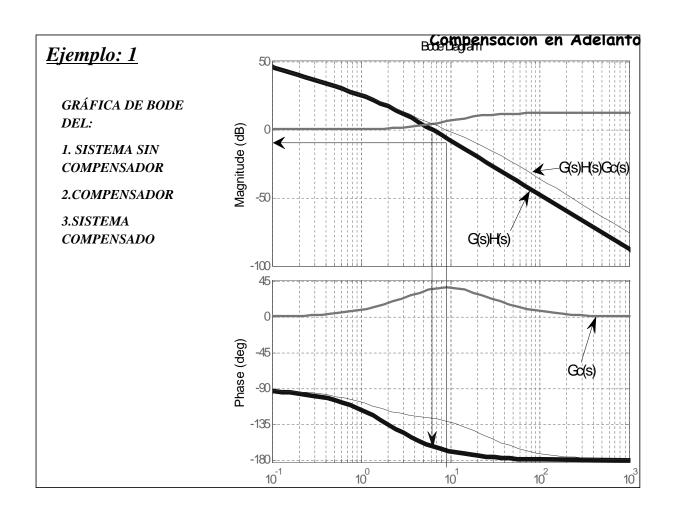
Ander J. Miranda

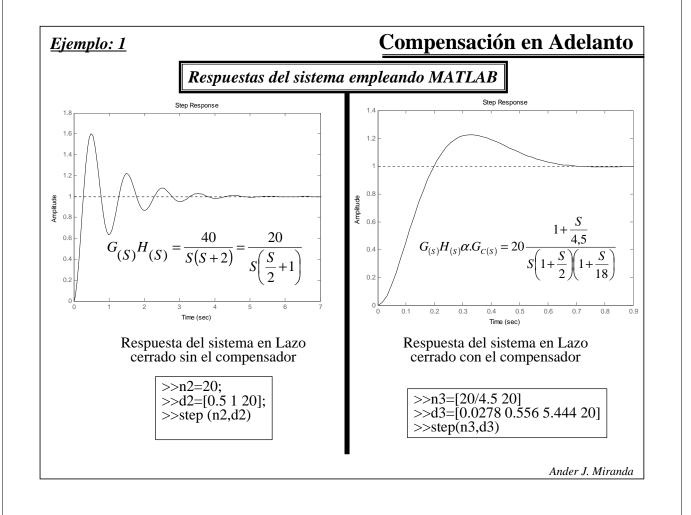
Ejemplo: 1

Compensación en Adelanto

8.- Comprobación

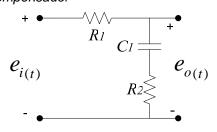
Sistema compensado:

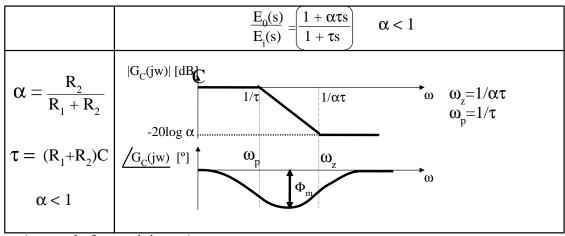

$$G_{(s)}H_{(s)}\alpha.G_{C(s)} = 20\frac{1 + \frac{S}{4,5}}{S\left(1 + \frac{S}{2}\right)\left(1 + \frac{S}{18}\right)}$$


$$FM_{DES} = 180 + G(jw)H(jw)_{C|_{w=wg'}}$$

Fase del sistema compensado evaluada en wg'

$$FM_{DES} = 180 + \left| G(jw)H(jw) \right|_{w=wg'} + \left| \frac{\left| Gc(jw) \right|_{w=wg'}}{\left| Gc(jw) \right|_{w=wg'}}$$


$$FM_{DES} = 50^{\circ}$$


Circuito Eléctrico del Compensador

Compensación en Atraso

$$\frac{E_{O(S)}}{E_{i(S)}} = \frac{1 + CR_2S}{1 + (R_1 + R_2)CS}$$

sen
$$\phi_m = (\alpha - 1)/(\alpha + 1)$$

- Atraso de fase máximo: φ_m

Compensación de Atraso

OBJETIVO

- En la compensación de atraso el objetivo es mover el cruce de ganancia a una frecuencia más baja, en donde se alcance el margen de fase deseado, mientras se mantiene la curva de fase de las trazas de bode relativamente sin cambios en la nueva frecuencia de cruce de ganancia.

CARACTERÍSTICAS

Mejora apreciablemente la exactitud del estado estacionario.

Como la frecuencia de ganancia disminuye, el ancho de banda del sistema en lazo cerrado se reduce; por tanto, el tiempo de respuesta es más lento.

Suprime los efectos de ruido en frecuencias altas.

Ejemplo: 2

Compensación de Atraso

Para el sistema mostrado en LA, diseñe un compensador que mejore el régimen permanente, que permita obtener una FM=65°, y un error en régimen permanente de 5% de la velocidad de salida,:

$$G_{(S)}H_{(S)} = \frac{K}{S(S+10)^2}$$

1.- Calcular K con las condiciones de régimen permanente:

$$E_{RP} = 0.05R_0 = (R_0 / K_V) \Rightarrow K_V = 20$$

$$K_V = \lim_{S \to 0} SG(S)H(S) = S\frac{K}{S(S+10)^2} = \frac{K}{100} = 20 \Rightarrow K = 2000$$

2. Calcule los valores de Bode gráficamente o en una tabla

$$G_{(S)}H_{(S)} = \frac{2000}{S(S+10)^2} = \frac{20}{S(\frac{S}{10}+1)^2} \Rightarrow G_{(jw)}H_{(jw)} = \frac{20}{jw(\frac{jw}{10}+1)^2}$$

Ander J. Miranda

Ejemplo: 2

Compensación de Atraso

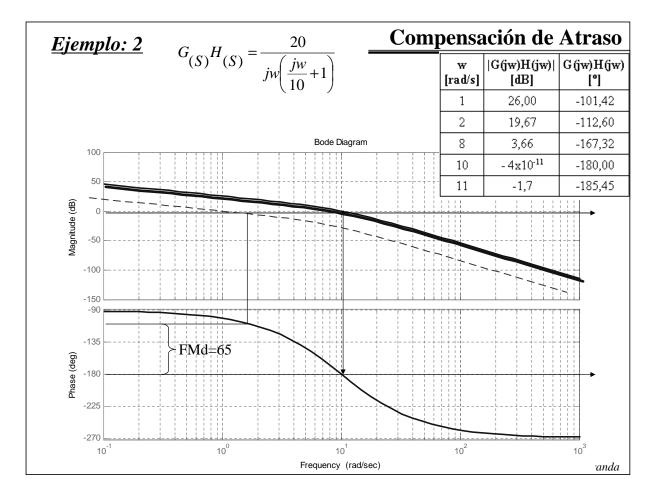
$$G_{(jw)}H_{(jw)} = \frac{20}{jw\left(\frac{jw}{10} + 1\right)^2}$$

$$|G(jw) H(jw)| [dB] = 20 \log 20 - 20 \log w - 40 \log \left[\left(\frac{w}{10} \right)^2 + 1 \right]^{1/2}$$

$$/G(jw) H(jw) [^{\circ}] = -90 - 2tg_{-1} \frac{w}{10}$$

3.- Determinar GM y FM:

$$GM = 0 dB - |G(jw) H(jw)|_{w=wf}$$


$$GM = 0 dB$$

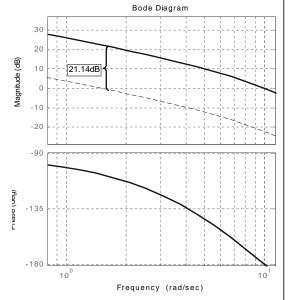
$$FM = 180 + G(jw)H(jw)_{w=wg}$$

$$FM = 0^{\circ} \text{ (No es la FM deseada)}$$

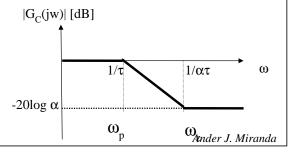
wf = wg = 10 rad/s

w [rad/s]	G(jw)H(jw) [dB]	G(jw)H(jw) [°]
1	26,00	-101,42
2	19,67	-112,60
8	3,66	-167,32
10	-4x10 ⁻¹¹	-180,00
11	-1,7	-185,45

4.- Obtener w_g':


$$Fm_{DES}^{} + FS = 180 + G(jw)H(jw)_{wg'}$$

 $G(jw)H(jw)_{wg'} = 65^{\circ} + 5^{\circ} - 180^{\circ}$


$$\overline{/G(jw)H(jw)} = -110^{\circ} : w_{g}' = 1,77 \text{ rad/s}$$

5.- Obtener α :

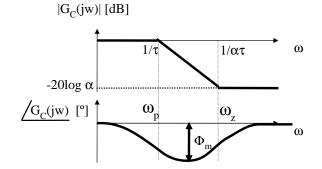
El controlador debe proveer la cantidad de atenuación igual al valor de la curva de magnitud en w_g', para que la manitud en ese punto sea 0 dB.

$$|Gc(jw)|_{wg'} = -20 \log \alpha : \alpha < 1$$

 $|Gc(jw)|wg' = 21,14 \text{ dB}$
 $\alpha = 10^{-|Gc(jwg')|/20} = 8.77 \text{ x } 10^{-2}$

6.- Obtener w_z:

Si w_z se localiza lejos por debajo de w_g', el atraso de fase del controlador no afectará en forma apreciable la fase del sistema compensado cerca de w_g'. Sin embargo, si w_z es muy pequeña, el ancho de banda del sistema disminuirá mucho. Por tanto se


asume:
$$w_z = w_g'/10$$

$$w_z = 0.177 \text{ rad/s}$$

7.- Obtener w_p:

$$w_p = \alpha w_z = 0.0155 \text{ rad/s}$$

$$G_{c}(s) = \frac{1 + \frac{s}{0,177}}{1 + \frac{s}{0,0155}}$$

Compensador

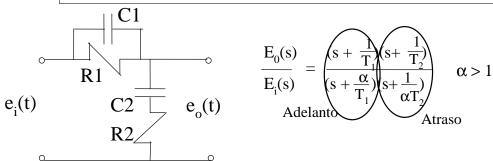
Ander J. Miranda

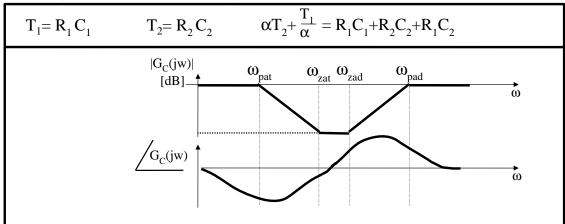
Ejemplo #1

8.- Comprobación

Sistema compensado

$$G_{c}(s) = 20 \quad \frac{1 + \frac{s}{0.177}}{S (1 + \frac{s}{0.0155})(1 + \frac{s}{10})^{2}}$$


$$FM = 180 + \underbrace{G(jw)H(jw)_{C}|_{w=wg'}}$$


Fase del sistema compensado evaluada en wg'

$$FM = 180 + -90 - 2tg^{-1} \frac{w_g'}{10} + tg^{-1} \frac{w_g'}{0,177} tg^{-1} \frac{w_g'}{0,0155}$$

$$FM = 64.7^{\circ}$$

COMPENSACIÓN ATRASO-ADELANTO

Prof. Oriana Barrios

Ejemplo #1

• Diseñe un compensador en atraso-adelanto que permita obtener una FM=50°, GM \geq 10 dB y K_V =10 seg para el sistema

$$G(s)H(s) = \frac{k}{s(s+1)(s+2)}$$

1.- Calcular K con las condiciones de régimen permanente:

$$K_{V} = \lim_{s \to 0} s G(s)H(s) = \lim_{s \to 0} s \frac{4k}{s(s+1)(s+2)} = \frac{k}{2} = 10 \implies \boxed{K=20}$$

2.-Trazar las gráficas de bode del sistema o una tabla con w(rad/seg), magnitud (dB) y fase de G(s)H(s) (°):

$$\begin{split} G(s)H(s) = & \frac{20}{s(s+1)(s+2)} \quad \text{, normalizando } G(s)H(s) = & \frac{10}{s(s+1)(\frac{s}{2}+1)} \\ G(jw) \; H(jw) = & \frac{10}{jw(\frac{jw}{2}+1)(jw+1)} \end{split}$$

COMPENSACIÓN EN ATRASO-ADELANTO

Compensación Atraso-Adelanto

Ejemplo: 1

Diseñe un compensador en atraso-adelanto que permita obtener una FM=50°, GM ≥10 dB y KV=10s para el sistema :

$$G_{(S)}H_{(S)} = \frac{K}{S(S+1)(S+2)}$$

1.- Calcular K con las condiciones de régimen permanente:

$$K_V = \lim_{S \to 0} SG_{(s)} H_{(s)} = S \frac{K}{S(S+1)(S+2)} = \frac{K}{2} = 10 \Rightarrow K = 20$$

2.- Calcular los valores de Bode gráficamente o en una tabla

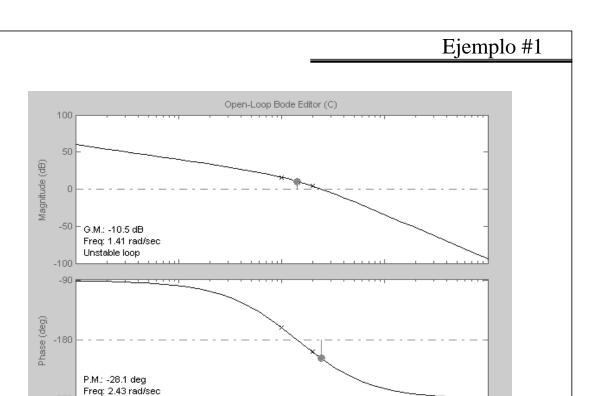
$$G_{(S)}H_{(S)} = \frac{20}{S(S+1)(S+2)} = \frac{10}{S(S+1)\left(\frac{S}{2}+1\right)} \Rightarrow G_{(jw)}H_{(jw)} = \frac{10}{S(jw+1)\left(\frac{jw}{2}+1\right)}$$

COMPENSACIÓN EN ATRASO-ADELANTO

Ejemplo #1

$$\begin{aligned} |G(jw) \; H(jw)| \; [dB] &= 20 \; \log \; 10 - 20 \; \log \; \omega - 20 \; \log \; \left[(\frac{w}{2})^2 + \; 1 \right]^{1/2} - 20 \; \log \; \left[(w)^2 + \; 1 \right]^{1/2} \\ \sqrt{G(jw) \; H(jw) \; \left[\stackrel{\textbf{o}}{} \right]} &= -\; 90 - tg^{-1}w - tg^{-1}\frac{w}{2} \end{aligned}$$

3.- Calcular GM y FM


$$GM = 0 \left. dB - \left| G(jw) \right. H(jw) \right|_{w = \ wf} \label{eq:gm}$$

$$GM = -10,45 \text{ dB} :: w_f = 1,415 \text{ rad/s}$$

$$FM = 180^{\circ} + \underline{/G(jw) H(jw)}_{w=wg}$$

$$FM = 180^{\circ} + (-208,09^{\circ}) = -28,09^{\circ}$$
 .: $w_g = 2,425 \text{ rad/s}$ (No es la FM deseada)

4.-La nueva frecuencia de ganancia w_g ' es w_f : w_g ' = w_f = 1,415 rad/s

10⁰ Frequency (rad/sec)

Ander J. Miranda

Ejemplo #1

5.- Calcular ϕ_m :

$$\phi_m = Fm_{DES} + FS$$
 :: FS= Factor de Seguridad (5° a 12°); $\phi_m = 55^\circ$

6.– Calcular α:

$$\alpha = (1+sen \phi_m)/(1-sen \phi_m) = 10$$

7.- Calcular el w_{zat} y w_{pat}:

$$w_{zat} = w_{g}'/10 = 0,1415 \text{ rad/seg}$$

$$w_{pat} = w_{zat}/\alpha = 0.01415 \text{ rad/seg}$$

$$G_c(s) = \frac{s + 0.1415}{s + 0.01415}$$

$$G_{c}(s) = 10 \frac{7s+1}{70s+1}$$

Ejemplo #1

8.- El compensador en adelanto debe contribuir con la misma magnitud del sistema en w_g':

$$|G(jw)H(jw)|_{wg} = 10,45 \text{ dB}$$

El compensador en adelanto debe pasar por (1,415 rad/s; -10,45 dB)

$$M = 20(lg w - lg 1,415) - 10,45$$

$$-20 = 20(lg w_{zad} - lg 1,415) - 10,45$$

$$w_{rad} = 0.47 \text{ rad/s}$$

$$0 = 20(\lg w_{pad} - \lg 1,415) - 10,45$$

$$G_{c}(s) = \frac{s + 0.47}{s + 4.7}$$

$$G_c(s) = \frac{1}{10}x \frac{(2,13s+1)}{(0,213s+1)}$$

 $w_{pad} = 4,7 \text{ rad/s}$ (También se puede obtener por $w_{pad} = \alpha w_{zad}$)

COMPENSACIÓN EN ATRASO-ADELANTO

Prof. Oriana Barrios

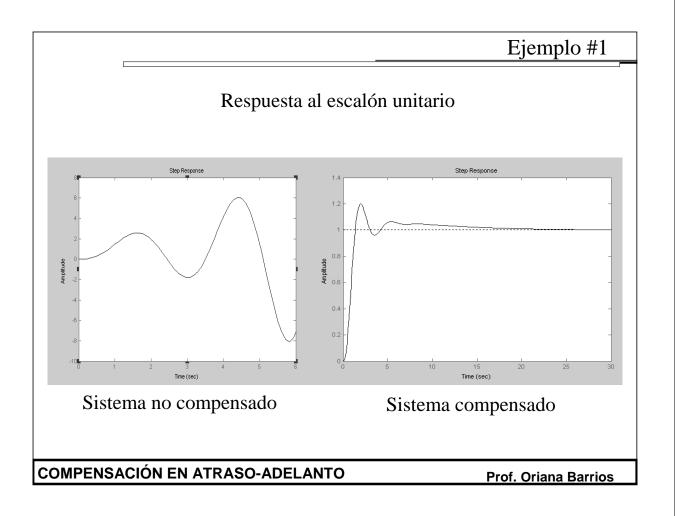
Ejemplo #1

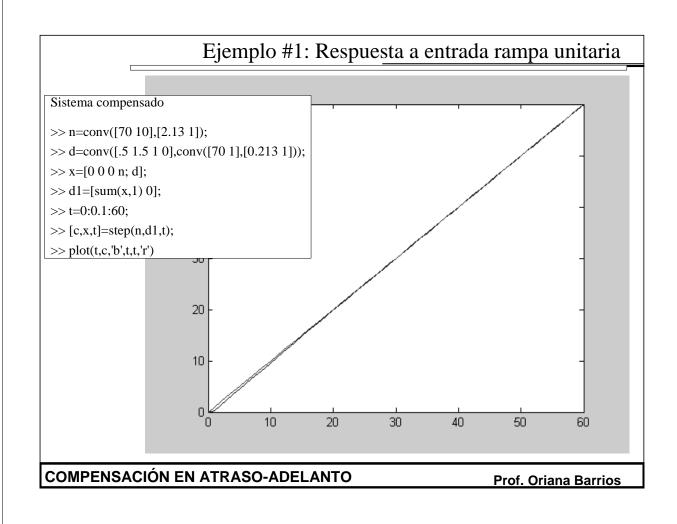
9.-Comprobación:

$$G_c(s) = \frac{10(2,13s+1)(7s+1)}{s(s+1)(\frac{s}{2}+1)(0,213s+1)(70s+1)}$$

Sistema Compensado

$$FM_{DES} = 180^{\circ} + \underline{/G(jw)H(jw)_{C}|_{w=wg'}}$$


Fase del sistema compensado evaluada en wg'


$$FM_{DES} = 180 - 90 - tg^{-1}w_{g}' - tg^{-1}\frac{w_{g}'}{2} + tg^{-1}2,13 w_{g}' + tg^{-1}7w_{g}' - tg^{-1}0,213w_{g}' - tg^{-1}70w_{g}'$$

$$FM_{DES} = 49.7^{\circ}$$

COMPENSACIÓN EN ATRASO-ADELANTO

Prof. Oriana Barrios

Características Básicas

- Al Combinar las características de la compensación en atraso y en adelanto se obtienen respuestas rápidas y con suficiente precisión estática.
- Incremena en dos (2) el orden del sistema, por lo que el sistema se hace más complejo y se torna difícil controlar el comportamiento de respuesta transitoria. (Al menos que exista cancelación entre un cero o un polo del compensador y un polo o cero respectivamente de la FTCA del sistema no compensado).

COMPENSACIÓN EN ATRASO-ADELANTO

Prof. Oriana Barrios